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Transformations of Gaussian Random Fields and a 
Test for Independence of a Survival Time 

from a Covariate 

Ian W. McKeague A. M. Nikabadze Yanqing Sun 

Abstract 

It has been almost sixty years since Kolmogorov introduced a distribution-free om- 
nibus test for the simple null hypothesis that a distribution function coincides with a 
given distribution function. Doob subsequently observed that Kolmogorov's approach 
could be simplified by transforming the empirical process to an empirical process based 
on uniform random variables. Recent use of more sophisticated transformations has led 
to the construction of asymptotically distribution-free omnibus tests when unknown 
parameters are present. The purpose of the present paper is to use the transformation 
approach to construct an asymptotically distribution-free omnibus test for indepen- 
dence of a survival time from a covariate. The test statistic is obtained from a certain 
test statistic process (indexed by time and covariate), which is shown to converge in 
distribution to a Brownian sheet. A simulation study is carried out to investigate the 
finite sample properties of the proposed test and an application to data from the British 
Medical Research Council's 4th myelomatosis trial is given. 

1    Introduction 

A standard way of testing for independence of a survival time from a covariate z is to fit 
Cox's (1972) model for the conditional hazard function, A(£|z) = Ao(£)ef?% and test whether 
the regression parameter ß is zero. However, this test has limited power because of the 
restrictive (viz parametric and multiplicative) modeling of the covariate effect. 

In this paper we develop an omnibus test that can detect arbitrary forms of dependence 
of a (possibly censored) survival time on a one-dimensional covariate, and which is asymptot- 
ically distribution-free. The latter property will be achieved via the transformation method 
of Doob (1949) and Khmaladze (1981). 

We begin by giving some background to the general problem of constructing omnibus tests 
(i.e. tests consistent against all alternatives) which have the distribution-free property. First 
consider the simple hypothesis F = 7*0, where Fo is specified and the life times 7\, • • •, Tn 

are completely observed iid random variables having distribution function F.   Let F(t) = 

lAMS 1991 subject classifications. Primary: G2G10; secondary: C2G20 
2Key words and Phrases. Distribution-free omnibus test, innovation Brownian sheet, counting processes, 

martingale methods. 



1 H"=i l(Ti < t) be the empirical distribution function of the 7','s and //„(/) = N/77(/•'(/) — 
FQ(1)) the empirical process. Assume that l\} is continuous. Dooh (1919) transformed /'„(/) 
to the uniform empirical process un(r) = /A,(7'o_1(.r)), which is an empirical process based 
on the iid uniform random variables /'o(7';), i = !,■■•.';. The distribution of ?/„ docs not 
depend on F0 (and it converges weakly to a Brownian bridge), so the diotiibution of any test 
statistic that is a functional of «.„ is free from /*'0. In particular, the Kolmogorov Smirnov 
statistic supr |«n(.r)| and the Cramer von Mises statistic J u^[x)dx are distribution-free. 

Next consider the composite null hypothesis F — FQ(-,0). where 0 is at) unknown pa- 
rameter. The natural extension of the above transformation. un(x) = />„(/'{" (.r,0)), where 
//,,(/.) = \/>i{F(t) — Fo(t.O)) is the parametric empirical process and 0 is an estimator of 0, is 
unforfurnatoly no longer distribution-free or even asymptotically distribution-free (l)urbin. 
1973). As a consequence, classical statistics such as supa. |w.„(.r)| or / ül(.r)d.r haw limit 
distributions which depend on Fo- Thus it is necessary to construct a more sophisticated 
transformation of //„ that can provide the basis for goodness-of-fit tests, generalizing what 
the uniform empirical process does in the case of simple hypotheses. Khmaladze (1981) 
introduced martingale methods to address this problem; see also Nikabadze (19S7). The 
parametric empirical process un converges weakly to some zero-mean Gaussian process v 
(Durbin, 1973), so Khmaladze first transformed the process // to an innovation martingale, 
which is a Gaussian process with independent increments and covariance function Fo(s/\l,0) 
and which preserves the information in v. Then he transformed the innovation martingale 
to a standard Brownian motion w. Applying the transformation v >-» xo to i)n. results in 
a test process that converges weakly to Brownian motion. This leads to an asymptotically 
distribution-free omnibus test. 

Chi-squared tests are widely used for goodness-of-fit testing and for testing independence 
of two variables in a contingency table analysis. They were first introduced by Pearson (1900) 
for simple hypotheses F — F0. The chi-squared statistic is formed by dividing part of the 
real line into cells and comparing the observed and expected frequency in each cell. Fisher 
(1922, 1924) extended this statistic to handle the presence of an unknown parameter 0 in 
FQ. Chi-squared tests depend on an arbitrary choice of intervals and they only use grouped 
data. Although chi-squared tests are easy to perform, they are not omnibus (unless the 
variables are discrete) and are typically less powerful than tests of Kolmogorov- Smirnov or 
Cramer-von Mises type, which use all the information in the data, 

In survival analysis, one is rarely able to observe complete life histories. Important 
examples occur with right censoring and left truncation (Kciding and Gill, 1990). These 
examples fit into the general setting of Aalcn's (1978) multiplicative intensity model for 
counting processes. In that setting it is natural to formulate hypotheses in terms of the 
hazard function A(/) or the cumulative hazard function A(0 = /oA(s)e£s, rather than the 
distribution function F. Andersen et al. (1982) studied tests of the simple hypothesis A — A0 

in terms of functional of y/n(l\ — A0). where A is the Nelson-Aalen estimator. Hjoit (1990) 
considered the composite hypothesis A = \o(-.0). with statistics based on functionals of the 
process ^i(A(t) — \a(1.0)), where 0 is the maximum likelihood estimator of 0. This process 
converges weakly to a zero-mean Gaussian process under the null hypothesis, and can be 
used to construct chi-squared tests. Alternatively, an innovation martingale can be found 
for the limit process and used construct an asymptotically distribution-fret" omnibus test. 

In many applications of survival analysis it is important- to consider whether a covariate 



has some effect upon survival, say through ihr conditional hazard function A(/|~) = \(t.z). 
That is. one would like to test the null hypothesis 

7/o : A(<, z) does not depend on the (ovariate -, 

against the general alternative that A(/,c) depends on z. For simplicity, we shall restrict 
the domain of (/.,z) to be the unit square. An omnibus test of //u is feasible" when the 
covariate is one-dimensional, such as age at diagnosis, disease duration, etc. Indeed, McK- 
eaguc and Utikal (1990, subsequently MU) proposed such a test, based on the process 
X(t,z) = y/n{A — A), where A is an estimate of the doubly cumulative hazard function 
A{1,z) = J(jJo A(.s,.r)f/xc/.s, and A{t.z) = z\{t) is the natural estimate of A under //,,. They 
showed that A' converges weakly under //„ to a Gaussian random field of the form 

m.{t,z) -If y/hdW - b(z) II <ji\W. (1. 
JQJQ JOJQ 

where W is a Brownian sheet and /?, b,(j are certain nonrandom functions. The above stochas- 
tic integrals are defined in the L2-sense, see Wong and Zakai (1971). MU's test was based on 
the Kolmogorov-Smirnov statistic computed directly from A*. However, while asymptotically 
omnibus, such a test is not asymptotically distribution-free and would require simulation of 
the process m to find critical values. 

We shall construct a transformation J that maps m to its innovation Brownian sheet. An 
estimated version J of J will be obtained by plugging an estimate of /; into J (it turns out that 
J does not involveg and b is known). We then show that J{X) converges weakly to Brownian 
sheet. In this way we obtain an asymptotically distribution-free omnibus lest for yyo, with 
the Kolmogorov-Smirnov statistic computed from J[X). No simulation technique is needed 
to find critical values. The test statistic converges weakly to sup \\\'(i. z)\. Although an exact 
formula for the distribution functicu of sup |W'(£.£)| is not known (only approximations are 
available, see Adler (1991)), it is straightforward to carry out a single Monte Carlo experiment 
to evaluate it quite accurately. Thus, our test avoids difficulties arising from simulating the 
null distribution for each particular problem. 

The paper is organized as follows. In Section 2. we construct the transformation ,/. In 
Section 3. we introduce the estimate J and define the test statistic. Results of a simulation 
study are reported in Section 4. In Section 5, the test is applied to a set of data from the 
British Medical Research Council's (1981) -1th mvelomatosis trial. Properties of the test are 
proved in Section C. Various lemmas needed through the paper are collected in an appendix. 

2    Transformation of m to Brownian Sheet 

In this section we construct our transformation ./ of the Gaussian random field m in (1.1) to 
Brownian sheet. Such a < ransformation is likely to have further applications in nonparametric 
statistics beyond our test for independence—in any setting where a test process converges 
weakly to a process of the form (1.1): e.g. in testing whether \(1,z) is independent of / (i.e. 
the roles of t and z are reversed), or testing whether a pure jump process on a finite state 
space is a semi-Markov process, see MU (Section -1.2). Of course, it is usually necessary to 
estimate J and how that is done will depend on the particular application. 



We begin with a key proposition showing that the law of a Brownian sheet \Y is preserved 
under a shift of W by a certain functional of \Y. 

Proposition 2.1 Let k € />'([(), l]2) natitfy /J A-2(.«. n)«/i! > 0 n.r. [<fo] /or M < 1. and Id W 
be a Brownian shed.   Thin 

m*..-) = iv«,.-) - /' [ /'/' ^1^1 ,„„-,., x)| ,,„ ,,,, 
./o   L./o./t,   f A-* .s.iMrtt' 

r'/i A-(s..r)A-(.s.») 

is n Brownian sheet on [0,1]*.   The relation (2.2) is invertibte: 

"'"•='="<'■--'+Ü.LL ̂ .■.■»^m*.: 

Proof   Let 

Then 

n(/,, ?/;«,.T) = 

j;F(>.r),/r 

A'(.s.j)fr(.s.«)/(.r > »)/(.s < /) 

1 rl 

f/ll. (2.:{) 

tf (/.. z) = W(t, z) - I'    f f a{t. u; s, x) dW{s, x) du. 
Jo  L./0./0 

Notice that # is a Gaussian random Held, so we only need to inspect its covariancc function. 
For(<',;')<E[0,l]2, 

cov(B(t,z).B(t\z')) = (tAt')(zAz') 

~ I    \ fra{t',u':s,x)dsdx\ du - [' f / /* a{t.u:s,x)dsdx 
Jo    L J0J0 J Jo   L Jo Jo 

du 

du du 

du' du. 

Since 

+ ['I*  Iff  u{t.u:s..c)a{t\u';s..e)d»d.r 
Jo Jo   I Jo Jo 

= (1,At')(zAz') 

-f / /       / /   a(t.u\s,x)a(t\u\s,x)dsdx 
Jo-h    1 Jo Jo 

- f a(t.u;s,u')l(s <t')ds- [ a{t\u';s.n)I{s < t)ds 
Jo Jo 

fr(.s,t/)/(.< < 1)k{s,v')l(s < tJJl F(.s..r)/(;r > v V u')d:v 

ÜkHs.v)dvtikHs.v)dv 

__ k(s,u')k{s.v)J(u' > v)l(s < t)I(s < t') 

k(s,v')k(3,u)l(U>u')l(s<1)l(s<t>) 

tik2{s.v)dv 

= a(t.u;s.u')I{s < /') + a(l'. it'. s. u)l(s < I). 

for almost all («.?/'. *) G [0,1]''. we have that B is a lirowuian sheet.   It can be verified 
immediately that (2.3) is the inverse of (2.2).     D 



A Brownian motion tv(1) is called an innovation process of a process £(/) if iv carries 
the same "information" as tlie process £, i.e. the <r-fields /""' and F] generated by v and £ 
up to each time / coincide, see Liptser and Shiryaycv (1977, p. 260). For our purposes, the 
appropriate extension of this definition to a two-parameter process £(/.;) and a Brownian 
sheet B[t,z) is made by requiring T? = fi, where tf = <r{£(.s,;); z € [0. l],,s 6 [0./]} and 
Tf is similarly defined. Note that T) represents the information about £(*.;) at all values 
of z and all s < t. 

We now give the main result of this section, providing an innovation Brownian sheet for 
the process ??/ in (1.1). 

Theorem 2.1 Suppose that h : [0. I]2 —* IR is a bounded positive iixasiirabh function which 
is bounded away from zero, b : [0, I] —* H is dijjerenliable with squan inUijmble derivative. 
f}{b'{x))2 dx > 0, z € [0,1) and g € L2({0, l]3). Then 

f'l ll^' k~h^i)Q{s,u,T)dr B{Uz)- I T h-'dm 
JoJo 

is an innovation Brownian sheet of the process m, where 

lr^(s.v)b'(r,)lr^{s,x)b'(.r 

elm {s.ii} (2.4) 

Q{s,u,x) - 
PTh-*{s,v){b'(v))2dv 

Proof     Notice that 
'1 /-uA; 

Let 

I T * Q{s,u,x)h-*{s.u)b\tt)dxdu =   l~ h-l>{s.x)ti{x)dx. 
JoJo Jo 

(/(/) = ffgdW. 
JoJo 

Substituting m into (2.4) we get 

B(t.z)   -s   \V(t.z)- I'll" h-2(s.x)b'{x)d,r-U(ds) 

- //  [ I"** Q(s,u,x)dx]dW{s<u) 
JoJo   L Jo 

+ 11     r* Q(-s-u-x) dx h-*(#, u)h'(u)ch I r(«/.s) 
JoJo   I Jo 

)- (ffg{*,y)\ [~ h-Hs,x)b'(x)dx]d\V(s,y) 
JMO I Jo 

-j'Q  [jfjf
1 Q{s,y,x)dW(8,y)]dx 

+ II   \q(s.y) [ /UA~ Q{s,v.x)lri{s,u)b'(u)dxdu 
JoJo   l JoJo 

I   \ ft  Q(s.y,x)dW(s.y) 
Jo   L JOJT 

=   W(t, 

d\Y{s.y) 

Wit.z) '~:> 

This is a Brownian sheet  by  Lemma 2.1  with h(s.x)  —  It   i (.*..r)b'(x).    The innovation 
assertion can be easily obtained by (2.4), (2.5) and application of Proposition 2.1.      D 



We shall use the notation ,/ for the transformation £ •—► ./(£), where £ is a random Held 
and ,/(£) is defined by the right side of (2.1) with m replaced by £. The domain of ,/ is 
composed of random fields £ for which the stochastic integrals in ./(£) exist in the /Asensc. 
Theorem 2.1 shows that J(m) is a Brownian sheet. 

3    The Test Procedure 

In this section we first describe the counting process framework for our problem and formally 
define A and A. Then we show that the transformation ./ given above asymptotically 
transforms A' = \/»(*4 — A) to a Brownian sheet. This is done via the continuous mapping 
theorem. Finally, we construct an estimate ./ of./ and show that ./(.V) converges weakly to 
a Brownian sheet.  This will complete the construction of our test. 

3.1 The Estimators A and Ä 

Let N(/) = (A'i(/), • • •, A'„(/)), / € [0.1], be a multivariate counting process with respect to 
a right-continuous filtration (.Ft), i.e.. N is adapted to the filtration and has components A?; 
which are right-continuous step functions, zero at time zero, with jumps of sine +1 such that 
no two components jump simultaneously. Assume that A', has intensity 

\l(t) = Yl(t)\{UW))- 

where \\ is a predictable {0, l}-valued process, indicating that the j'th individual is at risk 
when Y'i(t) = 1, and Z, is a predictable [0,1 ]■-valued covariate process. The function A(/,,~) 
represents the failure rate for an individual at time t with covariate Z,(/) = c. We assume 
throughout that (A,, Vj. Z,). /' = 1, ••-.?» are iid replicates of an underlying triple (.V. V, Z). 
Let F(s,x) — P{ZS < T.YS = 1). and assume that for each .<; € [0.1], /**($, •) is absolutely 
continuous on [0,1] with subdensity /(*,-)■ The functions b, h, </ in (1.1) are given by 
h(z) = z, It = A// and g = \/X • f. The transformation J will only be used with these h and 
h from now on. We assume that / and A are Lipschitz, of bounded variation, and bounded 
away from i-.ero. 

Consider dn equal width covariate strata lr — [xr_],.rr). r = 1,... ,c/„. where xr = rwn. 
and u'n = l/dn is the stratum width, arid let J. = lr for z € J,. Then, as in Ml', define 

where A<"'(*,c) = £,"=] Jo WH € It)dNi(») is the number of c-specific failures observed 
up to time t, and Yin){t.z) = ££_, I{Z,(l) € I:)Yi{1) is the size of the --specific risk set. at 
time t. The estimator A does not involve stratification of the covariate and can be obtained 
by setting w„ = 1 in A. In (3.6) and throughout the paper, we use the convention 1/0 = 0. 

3.2 A Continuous Version of J 

We now introduce a version j of./ that is defined on a suitably large function space and is 
continuous on a subspace supporting m. so the continuous mapping theorem is applicable. 



Let D2 = /^([O, l]2) be the* extension of the usual Skoroliod space to functions on 
[0, l]2. see Neuhaus (1071). Let H\'< denote the subspace of functions £ € lh f°'' which 
£,£(0, ■),£(■,()) have bounded variation, and let C2 denote the space of continuous functions 
on [0, l]2. Equip D2 and C2 with the uniform none.. 

For £ <E t"2 U tfl2 and (M) € [U. 1] x [()./»]. with ()</>< 1. define 

./(0(<-~-)= /'f/,(...rW£(*..r)- ff h(*.v.z)<IZ(s.u), (3.7) 
./a/0 Awn 

where the integrals are considered to he weak integrals (Hildebrandt. 1%:?). and 

/,(.,. ;r)   =   /r?(.s..r). 

/■-An ll~3[,t,X) 

/2(.s-,U.c)    =    /r'l.S«) f,._, ■   r/x. 

The upper bound /> on the domain of r is used to keep the the denominator in /2 bounded 
away from zero. In practice p would be taken close to 1 (the (Mid of the range of covariate 
values). Note that J is a well-defined map from G2U H\2 into A)2([0,1] x [0,p]) since Lemma 
1 shows that h inherits the properties of /.A; and Lemma 2 ensures the existence of the 
weak integrals when £ <~ CY We have included ÖV'a in the domain of./ because the paths of 
A' belong to Z?l2, but not to C2. 

Theorem 3.1 Suppose that wn x v~a, irhere | < a < 1. Then, tinder //0. J(.V) converges 
weakly to a Brownian sheet in D2([0. 1] x (0,/)]). 

Proof Properties of /J,/J obtained via Lemma 2 can be used to show that ./ is continuous 
as a map from C2 into D2([0,1] x [0,/J]). LI particular, we use the property that f>(-.-.z) 
has bounded variation uniformly in s, 0 < z < p. MU (Theorem 4.1) gives that A converges 
weakly in D2 to in, where m is defined by (1.1) with b(z) = :. Thus, since the sample paths of 

m belong to C2 a.s.. the continuous mapping theorem (Oillingsley. 1968) gives ./(A*)—>J(m) 
in £)2([0,1] x [0,/J]). The processes J(m) and J(m) have continuous sample paths and. by 
Lemma 3, they agree a.s. at each fixed (i.~), so they are indistinguishable. Theorem 2.1 
(with b{z) — z) implies that ./(ni), and hence J{rn), is a Brownian sheet.     n 

3.3    Estimating the Transformation 

In order to use the above result to build a test statistic, we need to estimate the unknown 
function in J, namely //. First consider the kernel estimator h suggested by MU: 

1   /V1 ..// -A . /z-.r ^--UO^H^r)'1»^ 
where />„ is     bandwidth parameter. A' is a Lipschitz nonnegative kernel function with com- 
pact support and integral 1. and 

/•-/•'    Y("> (</*..;•) 
H(l.z)=mcn / / l [,<h- 

JoJi) (V'(")(.s,.r)r 



is an estimator of //(/. ;) = /,[/"„* h(s..r)dsd,r. 
Wo will need to apply methods from stochastic calculus to various martingale integrals 

involving h, which is |)ossible provided that /»(-.-) is an ^-predictable process for each fixed 
z. Since h(-,z) is continuous, it is enough that it he adapter' to the filtration Jr,. Thus. w<- 
shall use a kernel function A" having nonnegative (as well as compact) support. 

The estimated transformation ./ is defined by inserting a truncated version h of h in place 

of h in ./, where h is given by 

l{l.z) = h(t.z)l(c;} </,(/,;)< c„). 

cn > 0. Note that ./(A) is well-defined since the paths of X belong to li\',. 

3.4    The Test Statistic 

If we show that J{X) converges weakly to a Mrownian sheet, then >ur test for //0 can be 
based on the Kolmogorov Smirnov statistic 

<? = sup0<,<,,0<,<„ \J(s/T,(Ä - A))(t. z)\ 

with P-values calculated from the distribution of sup0<KUK.<r |H~(/. c)j. For that purpose 
we restrict the choice of u>n,6n,cn as follows: 

Condition 3.1 
»■„ x u~a    where     y= < a < 1. 

lt„ x n~Ci    where     0 < ß < ~( 1 - a). 

cn X (logu)*'    where     -} > 0. 

This condition is satisfied, for example, by w„ x »", />„ x »". 

Theorem 3.2   Under II0, J{X) converges weakly to a Ihmrnian sheet in /.)..([(). 1] x [ü. f>]). 

Our final result shows that the test based on S is omnibus, consistent against any depar- 
ture from the null hypothesis llü. 

Theorem 3.3 The test based on S is consistent against the general alltrnativt that X(i.z) 
depends on z. for [t.z) in the domain [0, 1] x [0,/>]. 

4    A Simulation Study 

We have carried out a limited simulation study to assess the pel formal ice of the proposed 
test. We considered the Kolmogorov-Smirnov statistic S with the supremum taken over 
[0,1] x [0. .9], i.e. ft — .9. The covariate was taken to be uniformly distributed over [0.1]. 
The censoring was simple right censoring, independent of the failure- time, ami exponentially 
distributed with parameter adjusted to give a prescribed percentage 5% (low), lOVc (moder- 
ate), and 75% (heavy) of censored observations before the end of follow-up. The covariate 
strata were arranged to contain equal numbers of observations,   bor sample size u — 180, 
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Table 1: Observed levels awl powers of tlie lest for independence of a survival lime from a 
covariale with nominal level 5%. 

A(f,r) sample 
size 

censoring 
5% 40% 75';« 

1 
ISO .038 .021 .000 
300 .042 .03!) .003 
500 .073 .058 .001 

r: 

ISO .068 .025 .007 
300 .181 .110 .011 
500 .525 .38 .00!» 

r *' 

180 .128 .053 .008 

300 ,118 .27!) .032 
500 .872 .708 .182 

300 and 500, the number of strata d„ was taken to be 12. 15 and 20. resulting, in 15. 20. 25 
covariate values in each stratum. The corresponding bandwidths t>„ were .2!). .2(1. .22. and 
the kernel function A' was taken to be the indicator of [0.1]. 

The survival times were generated using the Cox model \{l,z) = c''°\ for ßQ = 0 (null 
hypothesis), 1 and 2 (alternative hypotheses). Table 4 gives observed levels and powers of 
the test at a nominal (asymptotic) level 5%, with each entry based on 1000 samples. In 
order to obtain the asymptotic 5% critical level for our test (i.e.. the 95th percentile of 
suPo<«i,o<;<.9 I "'A :)\)' we generated 10.000 replicates of the Brownian sheet, evaluated on 
a grid defined by 300 equally spaced points on each axis. Plots of the density and distribution 
function of the supremum of the absolute value of the Brownian sheet over [(), 1] x [0..!)] are 
given in Figure 1. The 5% critical level was found to be 2.28. 

The simulation results show that the observed levels are close to their nominal 5% values 
when the sample size is at least ISO and censoring is light or moderate. The power reaches 
52% at sample size 500 and low censoring, when the alternative is A(/.c) = < \ It exceeds 
70% at sample size 500 when the alternative is A(/.r) = c2z and censoring is moderate. 

In Figures 2-4 we give plots of the observed densities (each based on 1000 samples) of 
the Kolomogorov-Smirnov statistic S under the null and alternative hypotheses. They are 
compared with the density of supu<K, 0<,< y |M'(/,r)|. When the sample size is at least 300 
and the censoring is light or moderate, the observed densities agree well with their theoretical 
limit (see Figure 2). Under the alternatives \{t,z) — c: and c2c, when the sample size is at 
least 500 and the censoring is light or moderate, the two curves are quite separate, giving 
some idea of the power of the test (see Figures 3 and 4). In Figure 5, we give perspective 
plots of a realization of Brownian sheet and a realization of the test process J(X) (with 
A(/,c) = 1, sample size 500 and light censoring). As expected, these plots are qualitatively 
verv similar to one another. 
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Figure 1: (a) The density and (b) the distribution function of sup \W(t. s)\, {t, z) G [0,1] 

[0,-9]. 
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Figure 2: Observed density (dotted line) of the Kolmogorov-Smirnov statistic 5 under the 
null hypothesis \{t,z) = 1 compared with the density (solid line) of sup |W(£, s)|. 
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Figure 5: A single realization of Brownian sheet (first row), and a single realization of J(X) 
(second row) from simulated data (n = 500, light censoring) under the null hypothesis 
X(t,z) = 1. Positive parts are on the left, negative parts on the right. 
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Figure 6: The test process J(X) for the BMRC data (positive part on the left, negative part 
on the right). 
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5 Application to Myelomatosis Data 

We applied our test to a set of data from the British Medical Research Council's (BMRC) 
(1984) 4th myelomatosis trial. The data set contains records for 495 patients, including 
censoring indicator, serum ß2 microglobulin (at presentation) and survival time (in days). 

Many studies (e.g., Cuzick et al. (1985)) have suggested that serum 02 microglobulin lias 
a strong effect on survival, at least in the first two years of follow-up. In our analysis of the 
data, we shall ignore all covariates except for serum ß? microglobulin, which is taken on a 
log10 scale normalized to the interval [0,1]. The end of follow-up is taken to be 2000 days, 
before which 3% of the observations are censored. 81 patients were still at risk at the end 
of follow-up. The survival time is divided by 2000 to normalize it to the interval [0,1]. The 
covariate interval [0,1] is divided so that each stratum contains 20 covariate values except 
for the last stratum. We used p = .9, as in the simulation study. 

We have plotted the test process J(X) in Figure 6. The magnitude of the negative part 
of J{X) shows strong departure from a Brownian sheet, cf. Figure 5. The statistic 5 was 
found to be 5.335, which is highly significant. Our analysis confirms the strong influence of 
a patient's serum 02 microglobulin on survival. 

6 Proofs 

In this section we prove Theorems 3.2 and 3.3. We begin by introducing some notation. Let 
Mi denote the J"rmartingale M,(<) = Ni(t) — /0' A,(s) ds, and set 

M("»(M)   =   £/ I(Zi(3)€lt)dMi{s) 

A(n)(M)   =   £/(£■(*) €l,)V;(0MWO). 
1=1 

For a process £(t,z), set £r(0 = £(<,xr) where xT = rwn, r — 1,... ,dn. 
We shall have frequent use for the following bounds from MU (Lemma 1] 

sup E 
s,x,n 

nwn 
< oo,    for any positive integer k, 

supP{Y{n){s,x) = 0) < e-Cnw'\    for some C > 0. 

(6.8) 

(6.9) 

Proof of Theorem 3.2    By Theorem 3.1, it is sufficient to show that under H0, 

||(J-J)(A')||-^0, 

where || ■ || is the supremum norm on D2GO, 1] x [0,/?]). This will be done in the following 
two steps: 

j£ f2(s.u,-)dX(s)U) 

(G.10) 

(0.11) 

10 



where /, = /, — /,, and / is obtained by inserting h in place of h in /,, i = 1,2. 

Step 1 By the decomposition of A' given in MU (proof of Theorem -1.1), 

+IX^^H^^rx^x))dxds 
+
^IX .M5<*)A(*)'0>(n)(*) = o)dxds, 

where A/(n), V'(n) are defined by setting I, = [0,1] in M(n), >'(n), respectively. We denote the 
four terms in the above decomposition by /i, /2, /3, U, respectively. Since K is continuous 
and has nonnegative support, we have that h(-^x), and therefore /i(-,x), is .^-predictable. 
Thus the stochastic integrals involved in 1\ and 7*2 are square integrable martingales. Now 
|| 7i|| is bounded by 

sup 7/(0 + N/n sup   / h—^r—dx (6.13) 

where 

T)(t) =     SUp 
l<j<d„ 

t««.r)|    and   ««.„ - VBjftj^ *) ^. 

Since r/(f) is a positive submartingale, Doob's inequality gives Esup(7?2(t) < 4i?772(l). Also, 
since ££(l,r) = 0, and ££(1, j)£(l, fc) = 0 for all 1 < j 3* k < dn, we can apply MenchofTs 
inequality (see, e.g., Shorack and Wellner, 1986) here to get 

" '   -    V log2 J  %    A  \Jl,n ■   '    I (Yi"\s)Y 
dn      rl 

<   O(\ogdn)*tj0 E[(JXffa*)d*) ^ 
(*) 

ds 

dn    ,1 

< O(\ogdn)>£[ Elf pi{s,x)dx$£-  ds 

< ^OS4)2[|/>(/J?(S,,).X)^,]§[£/;E(^)^5] 

< 0(log4)V|[£^£(u4/r |/i(j,*)|3<fe)d. 

=   0(\ogdu)
2\f f E\fi\3dsdx 

.Jo Jo 

The second term in (6.13) is bounded by 

(6.14) 

? Mr<n>(rfs) 
77. SUp   /     SUp     /    /1 T-T— 

r   Jrr   i    7o       j;( '(a 
da- 

17 



which has second moment bounded by 

M<n>(rfs) 2 A/<n>(rf* t        I /« - MWds) 2 _,     ^ /' {f. lWn>(d*,x 
ntVnEsxip      sup   /  /i—7-7    rfx    <   nuij   £ sup   /   /l-r^w  

r   Jlr   t   \Jo       Yr{){s) JO        '   '•/o        >(,,(sr) 
rfr 

* o(i)[/0y>i/.i3*H? 

where Doob's inequality, Holder's inequality, and (6.8) are used. Therefore 

E\\h\\2 < O(\ogdnf\ II E\U\3dsdx\. 

From (6.16) with u;n = 1, 

darf. sax 

r  /■! /-l 

£||/2||
2   =   0(1) 

J0J0 
rf>s rfi 

Next, 

2f   /•!/•! 

(6.15) 

(6.16) 

(6.17) 

(6.18) 

(6.19) 

E\\hf   <   SupE[^(^^-A(5,x))]'[/;/;£/?rf,rf.r 

=   o{\)(Xll E\h\2dsdx, 
JoJo 

by Lemma 6. Using (6.8) once more, 

E\\h\\2 = o(l) [l[lE\M2dsdx. 
JoJo 

It can be checked that 

l/i|<O(c„)|/i-ft|/(ft#0) + O(l)/(ft = 0), 

uniformly in t,z. Thus, since h = h if ft ^ 0, 

E\fx\
3<O(cl)E\h-h\" + O(\)P(h=0), 

so, from Lemmas 4 and 5, 

[l[lE\fr\*<Udx = 0{<*n-<). 
JoJo 

Combining the bounds (6.16-6.20), we find that the second moment of the lhs of (6.10) is of 
order 0(logrfn)

2c^n"3i', which tends to zero by Condition 3.1. This establishes (6.10). 

Step 2 We now prove (6.11). Let 

h~l(s, u)/i~5(.s, x)      h~:{s, u)h~5 (s, x) 

(G.20) 

6(s,u,x) = 
£K-*{s,v)dv £lr*{s,v)dv 

(6.21 
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By the arguments of Step 1, the second moment of »he lhs of (6.11) is hounded by 

[" EsupljT 6(s,u,x)dX(s,u)   dx   <   0(\ogdn)
2 £\JJ E\6(s,xt,x)\3dsdu 

<   0(logdn)
2irfj E\6(s,u,x)\3dsdudz 

=   0(Iogdn)a4n*!<- 

where the bound on the triple integral is from Lemma 7.     o 

Proof of Theorem 3.3   Define 

A'{t,z) = z I (  \(s,x)f{s,x)dxds, 
Jo Jo 

dx 

0, 

to which Ä{t,z) converges in probability under the general alternative. From the definition 
of J in (3.7), it is easily checked that 

d2J(A-A') i 
\(t,z)- 

£h-l(t,u)\{t,u)du 
J}h-*{t,v)dv 

Suppose that J(A-A') = 0. Then the expression inside the square brackets above vanishes, 
so that 

X(t,z)f h~l{t,v)dv = j h-l{t,u)\{t,u)du. 

Taking partial derivatives wrt z both sides gives that d\(t, z)jdz = 0 for (t, z) € [0,1] x [0, p], 
so that H0 holds, contrary to the premise of the theorem. Thus, J(A - A")) ^ 0. From 
arguments in the proof of Theorem 3.2, it can be seen that \\(J ~ J)(A - A")\\—>0. Hence, 

\\J(A-A' ►||J(-4--4")||>0. (G.22) 

Along the lines of the proof of Theorem 3.2, it can be shown that J(y/n(A - A')) converges 
weakly in Z)2([0,1] x [0,/)]), although not necessarily to Brownian sheet, cf. the proof of 
Proposition 4.3 of MU. Similarly, using MU (Proposition 3.2), it can be shown that J{y/n(A- 
A)) converges in the same sense. The triangle inequality gives 

VfijlJ(A - A')\\ < \\J{\fi{A - A))\\ + S+ \\J(yfi{A - A'))\\ = S + OP(1), 

the equality holding by the continuous mapping theorem, so that S—>oo by (6.22). Thus 
the test is consistent.     D 

Appendix 

The following lemma is routine. 

Lemma 1 Let h, h\, h2 be functions on [0, l]2 that have bounded variation, and are Lipschilz, 
with h nonnegative and bounded away from zero. Then l/h, \fh\ and h\h2 have bounded 
variation and are Lipschitz. 
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The next two lemmas collect some properties of weak integrals in the plane The first is 
a version of the integration by parts formula. Let $ : J —» III, where J - [a, a'} x [h, b'}. 

Lemma 2 //£ : J —t il is continuous and <j>,<f>(a,-), and &(-,b) have bounded variation, 
then the weak integral ffj <f> d£ exists and is equal to: 

JJ d(<t>{s,x)Z(s,x)) + JJ Z(s,x)d4>(s<x)- j* tts,b')M«,l>) 

+ f fla,6)<ty(a,6)- /6 £(a',x) #(«'•*) + /   £(a,x)<te(a,x). (A.l) 
./a J6 •''6 

Proof   Theorem 9.3 of Hildebrandt (19G3) gives that the weak integral 

JJJ tf (*.*) - €(*, i) - ^(«, x) + {(a, 6)) dfla, x) (A.2) 

exists, and coincides with the weak integral 

JJ (<t>{s,x) - <f>(s,b') - 4>{a\x) + 6(a\b'))di{s,x), (A.3) 

which exists by Theorem 8.8 of Hildebrandt. Theorem 5.8 of Hildebrandt shows that <j>{-,x) 
and <t>(s, •) are of bounded variation for fixed 5, J. (A.l) can then be obtained by rearranging 
the terms in (A.2) and (A.3).     D 

Lemma 3 Let £ be a stochastic process on J. If the weak integral ffj 4>d^ exists a.s,, and 
the stochastic integral ffj <f> d£ exists in the L2-sense, then they coincide a.s. 

Proof The result follows immediately from the definitions of the stochastic integral and 
the weak integral, and the fact that an LMimit agrees almost surely with an a.s.-limit,     o 

The next lemma is a refined version of Proposition 3.3 of MU, giving a rate of convergence 
of h to h. 

Lemma 4  There exists ( > 0 such that 

II E\h(t,z) - h{t,z)fdtdz = Oin-t). 
Jo Jo 

Proof We shall use much of the notation of MU (proof of Proposition 3.3), without re- 
defining it here. As in MU, 

\h - hf < 0(l)[\h - hf + \h- h°f + \h° - iJf + |/*t - h'f + \R\% (A.4) 

For the first term, 

SUP|MM)-MM)I3 < sup[i5>(^)|A'(^)--/ i<(=-r-)d* t,z t,z   \-Kj~!      \    on    J \     \    bn     1       wn Jir      \    bn    ) 

=   0(w3
nb:9)H*(hl). (A.5 

20 

i 3 

A —*jr 



Also, 

EH3(\,\)-E\nw. 
7' N<n)(ds,x) If   iL—!iff ,nJoJo Ö7^ 

3 

dx 

<8E 
r>/>    A<")(iti) 

nun / /    ,,,, ., —- as dx 
Jo Jo  (>'<">(*, T))2 

xW 
3 

+ 8(mrnfE 
'/•>  A/("»(^S-r) 

(l"<"'(«^))J Jo Jo 
dx (A.C.) 

The first term in (A.6) can be shown to be bounded using (6.8).   The expectation in the 
second term in (A.6) is bounded by 

/'^',v,y'«f^/'(^"))!fc 
Jo       Jo   (V»(s,x))2 Jo   v        '      ' 

(A. 

where 
' MW(ds,x) 

,v'   y0 (v<n)(s,j)) 

and we have suppressed the dependence of Mx(t) on z. Let [Mi] and (M\) be the quadratic 
variation and the predictable quadratic variation of martingale Mi, respectively. We shall 
use the Burkholder-Davis-Gundy inequality (Dellacherie and Meyer, 19S2, p.287) 

E sup A/,4(v) < CE[MX)\. 
ve(o,t] 

(A.8) 

Since the square integrable martingale Mi is of integrable variation, it has no continuous 
part. Hence [M\)t = £..<« (AAfi(u))2. The process 

««>=[M,I, - («,). - /; ^$ 

is a martingale, so E[M{\\ < 2E{Ml)\ + 2E?{1) = 2E(MX)\ + 2£(0,. But. by (6.8), 

1    A<B'(s,x) 

= 0 
mu. 

*«>■ - E/.'[F^fj?*=°(i)'' 
It then follows from (A.7) and (A.8) that the second term in (A.6) is of order 

0(nwnfO 
!     *H 

nii;r 

0, 

so EH3{1,1) < 00, and from (A.5), 

Esup\h(t,z)-h(t,z)\   =0(wXl- 
t.z 

;A,9) 
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Since sup \h(t,z) - h°(t,z)\ = 0(6n), by the Lipschitz condition on h. 
t,t>kn 

/71 \h(t,z) - h°(t,z)\3d(dz = 0(bn). 

For the third term in (A.4), 

sxip\h°(t,z)-h\uz)\ 

d„ 

(A.10) 

M 

<!, 

h(s,xr)dx 

dx 

+ 0(wn) 

<±0{wnb;1) + 0{wn) = o(wnb;2). 
On 

For the fourth term in (A.4), 

sup E\tf{t,z)-h'{t,z)\3 

bid' 

(A.11) 

t,z 

= sup E 
t,z kP<^)Jo<-^)^]-nw^ ds 

*<j&v$«m\1' 
xE 

6„ / (vr(s)f 

3.1-3 

(k 

< 0   ——    (&„</„)  sup£/t(3,xr)-uu;„     , , . 
VW-dn/ '•'       I (Vr   '(«))' 

Using the Lipschitz property of A and (6.8), the supremum term above is bounded by 

OK) + 0(1) sup £ 

<oK) + o(i) 0 

nwn 

1   ^2 

niü« 

/(s,2r) 

+ 0(e-Cmw") = 0 

+ o(i)supP(v;(n)(*) = o) 

1   \§ 
niü„ 
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where we have used the Lipschitz property of / and the fact that V'r
(n)(,s) 's a binomial r.v. 

with mean of order 0(nwn) to bound its fourth central moment. Therefore 

sup E|fct(t,t) - h'{t,:)|3 = o(±)o (—)' = O I —~ )' . (A. 12) 

Finally, for the fifth term in (A.4), 

supE\R(t,z)\3 <sup[ER\t,z)}*. (A.13) 
t,z t,l 

Let 

Then R{t,z,-) is a r,   rtingale. Using the same arguments that were applied to A/i, 

ER*{t,z)<E sup A4(<,:,u)<C£[/i(<,--,-)]?<0(l)(E(/?(<,r,-))? + ^2(l)),    (A. 14) 
0<u<l 

where {(u) = [ß(i,z, •)]„ — (./?(*, z,-))u is a martingale. Since no two of the counting processes 
Nj.n\ r = 1,2, • • • ,d„ jump simultaneously, 

W. *,•)]■ = £(A/?(M,r))2 

v<u 

It follows that 

The last two terms in (A.14) can be bounded above as follows: 

-   °(^j)4(m"»)"6/^6''(/«)2 

2 

51 

"tt'"'n ' 
,2l.4\-l =   ©(lKn^)-1. (A. 10) 
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sup£{2(l)   =   sup £7(0, 
M «.* 

* °(£)VS*(^)MT)^»-** 
<   O(^) {nwn)-

7(bndn)bn 
n   n 

=   0(l)(nJ6^) 

From (A.13-A.17), we get 

sup£|ß(t,c)|3<0(l)[nX 
t,z 

21.41-4 

(A.17) 

(A.1S) 

Finally combining the bounds for the five terms in (A.4), we have 

/71 E\h(t,z) - h{t,z)fdtdz   =   Q[w3X9 + bn + wlbf + (nwXr1 + (n^n)"1) 
JO JO 

=   0(n-<) 

by Condition 3.1, where ( = min(/3, y(a - ^)) > 0. D 

Lemma 5 
// P{h{t,z) = 0)didz = 0{n'<). 

Jo Jo 

Proof   Let 0<c<C<oobe lower and upper bounds for h. 

P(fi(t,z) = 0)   =   P(h(t,z)<c;l) + PCh(t,z)>cn) 

<     P(h(t, Z) - h(t, Z) < c;1 - C) + P{h(t, 2) - h{t, Z) >Cn-C) 

=   P(h(t, z) - h(t, z) > c - c~n
x) + P(h(t, z) - h(t, z) >cn-C) 

<   E\h(t,z)-h(t,z)\3 | E\h(t,z)-h(t,z)\3 

(c-cn"M3 

so the result follows by Lemma 4. a 

Lemma 6 

(c„ - cr 

r     /A(n)f< ■?) \i2 

Proof   The expression on the lhs above is bounded by- 

sup E ^0{wn)J{Y{n](t,z) ± 0) + 0{^l)I(Y{n)(t,z) = 0) 

< O(Jnwi) + 0{n)sup P(Y{n](t,z) = 0) 

< 0{J(1~2a)) + 0(ne-c,l'"a) -» 0, 

where the last inequality comes from (6.9). ü 
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Lemma 7 For 6(s,u,x) defined by (6.21), 

oJoJo 
E\6(s,u,L;)\3dsdudx = 0(c;-n  <). 

Proof   Let 

7, = /(Ä(a,u)^0, h{s,x)^0, I k"l{s,v)dv^0), 
Jz 

h = I(Ms,u) = C) + 7(/>(s,x) = 0) + 7(|   lrl{6,v)dv = 0). 

Then 

|*(*,u,*)|  =0(c„) 

+ 

= 0(c„) 

du (Ä_,(s,u) - A_1(a,u))W(«,x) / /T'^ü) 

(H^xJ-Hf^x))*-"1^,«) / h-x(s,v)dv 
Jx 

+fc_*(*,*)fc-x(*,u) f\h-\s,v) - /r'^t-))^ 7, + 0(72) 

+ J1\h~l{s,v)-h-l{s,v)\dv Ix-rO(h) 

2   » 
c£|/i(s,u) - A(5,u)| + cJA(a,x) - Ms»x)l 

1      V 

+ I' I(h{S,v) = 0)dv\ +0(/a). A J 

where we have used the fact that A = h when /t =^ 0. Thus, 

£|S(s,u,x)|3   <   0(cn)
3[clE\h{s,u) - h{s,u)\3 + c3

nE\h\s,x) - h{s,x)\3 

+c3 I* E\h{s,v)-h{s,v)\:idv+ I* P(h{s,v) = 0)dv 
Jo Jo 

+O(l)\p{h{s,u) = 0) + P{h{s,x) = Q) + p(J h-1{s,v)dv = 0j . 

Notice that if h(s, 1)^0, then c"1 < h(s, 1) < cn. Since h(s, •) is continuous, c"1 < h(s, v) < 
cn in a small interval i> € [1 — £, 1], £ > 0. Hence c": < h~l(s,v) < cn, for v € [1 — £, 1]. 
Hence ft h~1{s,v)dv ^ 0, for x < 1. Therefore, 

p(/ ^(«.rjrfo^o) <P(h{s,l) = Q),        for x < 1. 

Now apply Lemmas 4, 5 and the fact that /J P(h~l{t, \) = Q)dt = ü(n_<:), which is easy to 
see from proofs of Lemmas 4 and 5, to complete the proof. 
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